大规模的数据库存储系统中,数据的生命周期管理是很有必要的;从业务角度发现过期数据,数据归档和数据碎片整理等。以MySQL为例,1个运行很久的TB级MySQL实例中,极有可能数百GB的数据,对业务来说是”过期数据”可直接归档后清理。如果不能发现和及时清理,这部分“过期数据”对生产数据库备份资源消耗,占用工作集数据内存(过期数据行可能分散InnoDB的page中),影响数据还原的RTO等。从成本和运维的角度看,代价都是很大的。针对MySQL这类”过期数据”问题,通过MySQL巡检系统发现问题,使用MySQL归档系统备份和删除数据等。
一、Redis死键的定义
本文简单聊下Redis”死键”的问题,从业务角度对”死键”的2个定义:
- 设置有生存时间Time to live:TTL的键,已经过期”死亡”,但因Redis主动清理不及时,导致这类键堆积.(这里可能不清晰,后文会详解)
- 未设置有TTL键,使用这批键的程序功能已下线,导致这类键在集群中堆积,无人管理;有的键长达6个月访问过一次。
二、Redis过期键不能及时清理
Redis可对键设置生存时间, 当键的生存时间为0(过期键)理论就会被删除,并释放占用的数据结构和内存资源。
但Redis为保证请求的性能,过期键并不是立即删除的。
这节主要讨论,当产生过期键的速度>>Redis删除过期键的速度时,导致过期键堆积的问题。
三、Redis删除过期键的策略
Redis删除过期键有两种策略:passive way和active way.
- passive way(惰性删除):当客户端访问到过期键时,发现它已过期,Redis会主动删除它
- active way(定期删除):Redis会定期调用删除过期键,调用频率由参数hz控制,默认每秒调用10次
我们重点讨论第二种”定期删除策略”。Redis每个database(Cluster模式下只有0号库)都对应expire的dict,用以保存Redis设置有生存时间的键;Redis每秒调用10次(hz参数决定)activeExpireCycle函数;
- 每次随机获取20个带有生存时间的键。
- 删除其中已过期的键。
- 如果其中过期键超过25%(即大于5个键是过期的),activeExpireCycle函数会重新调用,开始第一步(如果大量KEY同时过期,可能引起Redis性能抖动)。
四、Redis定期删除的速度
Redis定期删除过期键的速度? 怎么监控它?
Redis定期删除动作每秒执行10次,正常情况每次删除几个过期键,这样每秒删除过期键约数十个。 通过info stats的expired_keys指标记录累计删除的过期键数量。根据生产监控(hz=10)Redis每秒删除过期键20~25个,每天能删除约200百万个过期键。有的Redis单个实例包含数千万个键,如果业务设计键过期处理不合理,每天产生过期键多于200百万。这容易导致Redis实例中存在过期键,最坏情况占整个键容量的25%;也就说Redis实例最坏有1/4的内存被这类过期的”死键”所占据浪费。
Redis 查看过期键删除数量127.0.0.1:xxx> info stats# Statstotal_connections_received:33843364total_commands_processed:211474375292instantaneous_ops_per_sec:9438total_net_input_bytes:19661370696457total_net_output_bytes:34509115216581expired_keys:7575307675evicted_keys:0keyspace_hits:72743876832keyspace_misses:57604962586latest_fork_usec:95143
大量过期键堆积,最直接影响是浪费内存空间;另外还会有些”灵异现象”
- Master的键个数比Slave多20%
- 读定分离时,应用程序读取Slave时能返回快过期的键
- Redis scan或keys出来的键个数,远小于dbsize返回的个数
- 高并发情况下,可能出现performance抖动,定期删除最坏可占25%的CPU时间片
这些现象都和过期键的堆积有关。那么我们怎么避免这类过期键堆积呢。
五、如何避免过期键堆积,成为”死键”
有效避免Redis过期键堆积,从两个方面解决: 降低过期键产生的速度;和加快定期删除的速度。
- 业务设计键的过期时长时,是否考虑过期键生成的速度;能否加大过期键的生存时间。 如天气缓存集群,大量的键要求1分钟过期,从产品需求角度,能否设置更大。
- 尽量避免使用大实例,控制Redis单实例的键个数(如1kw),可有效控制单个实例过期键产生的速度;拆分为更多的分片,加大集群定期删除的速度
- 适当调大hz的值,增大每秒定期删除的次数;建议调整60,官方建议小100; 因调用serverCron除了过期删除动作外,还有很多其他操作,可能占用过多的CPU时间片,影响业务请求。 我们测试hz从默认10调整到100时,清理过期键的速度从20个升高到140个。
- 主动触发Redis”惰性删除策略”,通过scan命令扫描整个实例的键,Redis会删除所有已过期的键。 如果通过业务优化,扩容实例和调整hz都不能解决,可考虑定期使用这个大招。
以下是一个shell, 获取当前服务器,Cluser的Master通过scan方式清理过期键local_ip=`ifconfig | grep -Eo 'inet (addr:)?([0-9]*\.){3}[0-9]*' | grep -Eo '([0-9]*\.){3}[0-9]*' | grep -v '127.0.0.1'`redis-cli -p 6379 cluster nodes | grep "master" | grep "$local_ip" | while read nodedo node_ins=`echo $node | awk '{print $2}' | cut -f 1 -d ":" ` node_port=`echo $node | awk '{print $2}' | cut -f 2 -d ":" ` redis-cli -h $node_ins -p $node_port --scan >> /dev/nulldone
六、你的Redis有堆积过期键吗?
业务低峰期,找个Redis Master实例,支持scan命令(QPS会增长1w),查看命令执行前后,dbsize/used_memory是否有明显下降 redis-cli -h $node_ins -p $node_port –scan >> /dev/null
七、应用程序已不使用的键
一个Redis集群,分析键空间发现70%的键,3个月未访问过。这类键没未设置生存时间,实例也不能设置淘汰机制。 很多应用程序功能已下线,但它使用的Redis键往往无人清理或通过DBA处理;这样的键从业务角度看,属于无用的”死键”。
八、获取键的idletime
每个Redis键都有一个lru的属性字段,用于记录它最后一次被访问的时间。
而object idletime命令,可通过系统当前时间-lru时间,得到键多久没有被访问的秒数。
说明:object idletime命令访问键时,不会改变键的lru属性,即不会影响键的访问时间
以下示例,键"key:000000008149"已有150039秒未被访问过127.0.0.1:7000> object idletime "key:000000008149"(integer) 150039127.0.0.1:7000> object idletime "key:000000008149"(integer) 150041
九、获取键空间空闲时间超过指定时间的键
使用Python写个简单程序,scan指定数据库的键空间,打印idletime超过指定时阀值的键。
#-*- coding:utf8 -*import redisimport time//Action: scan 0号数据库的键空间,获取空闲时长大于指定时间的键的列表,达到获取业务死键的作用//日期: 2016-08-11TIME_THRESHOLD_SECOND = 2592000 # 获取idletime时长超过TIME_THRESHOLD_SEC秒数键打印. 默认:30天COUNT = 200 #scan每次返回的键个数,建议不要太大,避免O(n)的n过大出现慢查询. 默认:200个YEILD_SECOND = 0.05 #每次scan后,sleep 0.05秒;本地测试如果不sleep,此工具会增加约2w的QPS. 避免对高负载的Redis实例产生影响。 #默认:0.05秒,增长约3500个QPS,其中一个时间复杂度是O(COUNT). 如果实例负载高,key不多可以考虑sleep 0.1秒def get_key_idletime(): r = redis.StrictRedis(host='127.0.0.1', port=6380, password="xxxx" ,db=0) cursor = '0' while cursor != 0: cursor, data = r.scan(cursor=cursor, count=COUNT) for key in data: key_idletime = r.object("idletime",key) if key_idletime > TIME_THRESHOLD_SECOND: print key , " ", key_idletime time.sleep(YEILD_SECOND)get_key_idletime()
我们定位Redis的长期未被访问的键,我们怎么确认属于哪个业务功能呢? 怎么预防业务的“死键”存在?
十、怎么减少业务”死键”的产生
- 通过3.1中定期巡检,自动发现1个月未访问过的键,并自动通知业务确认
- 设置合理的命名空间,我们建议三段式,用”:”分隔。每个集群固定前缀:每个业务功能前缀:实际键名(前缀尽量短,建议2个字节,减少内存消耗)。
每个团队按大业务功能有多个集群,每个集群有多个小功能模块;这样命空间管理后,集群有任何问题,DBA定位导致问题的”键前缀”,通过集群对接负责的工程师 很快就定位是哪个功能,什么情况引起的问题。
- 给键设置合理的生存时间; 有效避免业务死键发生。比如用户session, 用户最近x小时已安装APP列表等业务场景。有存储性质的集群,也可要求设置合理过期时间,如几个月。通过info Keyspace命令,可查看当前实例有多少键设置有生存时间属性。(另外设置过期时间,每个键多消耗约32Bytes)